Potential Benefits of Incorporating **Biochar**, a Soil Amendment, into Wetland Reclamation

By Tyler Nicoll Ground Level, Inc.

Thank you to...

• Ground Level, Inc. • Mosaic Co. • Lance Moody, Jimmy Reeves, Grant Lykins • Waste to Energy Solutions, Inc. • Mirimichi Green- Dr. Bud Smart

Things to Consider...

What is the problem that needs to be fixed?
What is biochar?
What can biochar do for reclamation?
What is the current research set-up?

The Problem

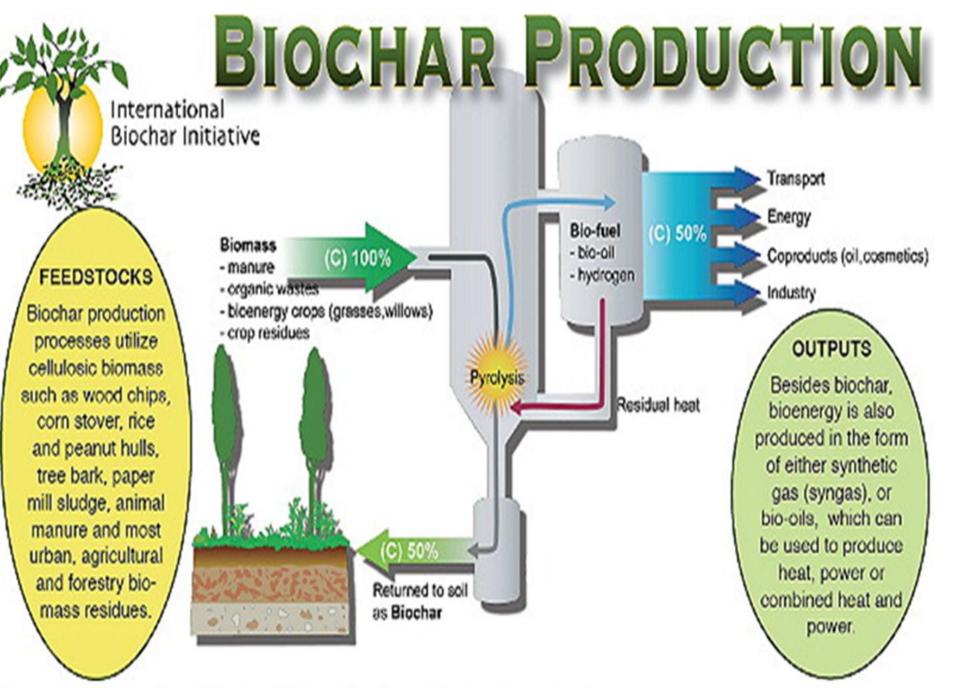
o Poor Soil Characteristics

- Sandy, low organic matter, low pH
- Hydrology
 - Sites do not receive sufficient water
 - Drought periods
- Green House Gas Emissions
- Water Quality Degradation
 - Storm water run-off, agricultural

Goal:

•To find cost-effective and sustainable tools to improve current restoration practices.

• Specifically: Increase plant survival and growth to decrease restoration management time and cost.


What is biochar?

Carbon-based material made from the decomposition of biomass waste at high temperatures

- •This process is called Pyrolysis
- Biochar may be the *bi-product* of energy production

Lehmann and Joseph 2009

Source: The International Biochar Initiative http://www.biochar-international.org/

Green House Gas Emissions Offset

- The carbon stores in biochar are stable for hundreds of years
 - Creates a carbon sink in the soil
- Pyrolysis stabilizes carbon and captures gases that would otherwise be released into the environment through natural decomposition.
 CO2, Methane, Nitrous Oxide

Biochar History

• Biochar is modeled after Terra Preta:

- Dark, carbon rich, fertile soils uncharacteristic of the Amazon Region in which they were found.
- The anthropogenic plots are significantly more productive hundreds of years later than in surrounding areas.

Lehmann and Joseph 2009

Biochar Characteristics

- Neutral to alkaline pH
 - Raises pH of acidic soils
 - Can eliminate or reduce lime requirement
- Low Bulk Density, reduces soil compaction
- High Surface Area and pore space
- Provides substrate for soil microbes
- High Cation Exchange Capacity
- Increases water retention and decreases nutrient leaching
 - Reduces fertilizer need
 - Can treat storm water run-off

Lehmann and Joseph 2009

Magnified Pore Space Sand vs. Biochar

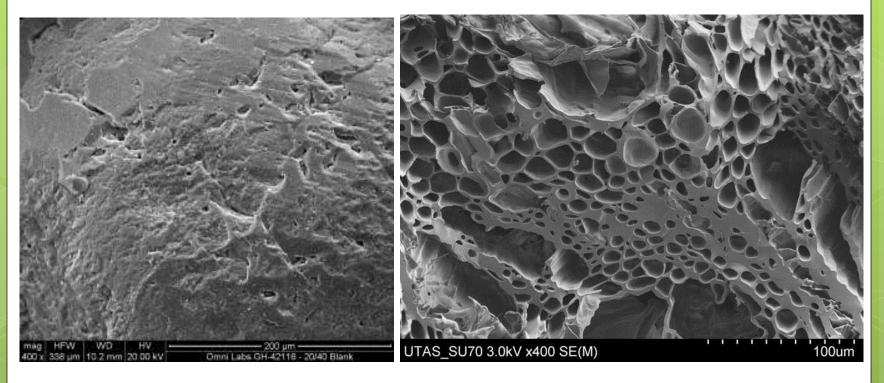


Photo Credit: drillingcontractor.org

Dr. Jocelyn & biocharproject.org

Reclamation Research

• Goal of research:

 To find the biochar application method and rate that will significantly increase tree survival and growth while still being costeffective.

Application Method

Broadcast & Disk the Biochar into the Soil
 Hand Fill the planting hole with Biochar

Disking Application

• Pros

- Long term tree growth supported
- Contributes to establishment of ground cover vegetation
- Large area covered for run-off treatment

o Cons

- Requires a large amount of biochar
- Requires heavy equipment

Hand Filling Application

• Pros

- Initial tree establishment assistance
- Biochar is concentrated around tree base
- Requires less biochar and no heavy equipment

o Cons

- Does not assist in ground cover establishment
- Less run-off filtration
- Less biochar in landscape=less support for long term tree growth

Research Set-up

- Wetland Plot: 9 acres
- Tree Species Planted: Black Gum, Red Maple, Sweet Bay, Sweet Gum
 - Hand Filling- 1/2 cup on bottom
 - 1/2 cup on bottom and top
 - Disking Application Rates :
 - o 0.5 ton/acre
 - o 1 ton/acre
 - o 1.5 ton/acre
 - o 2 ton/ acre
 - o 2.5 ton/ acre
 - o 3 ton/acre

Research Set-up

• Upland Plot: 10 acres

- Tree Species: Live Oak, Slash Pine
 - Hand Filling ¹/₂ cup in bottom
 - 1/2 cup in top and bottom
 - -1 cup in bottom
 - -1 cup in top and bottom
 - Disking Application Rates
 - o1 ton/acre
 - o2 ton/acre
 - o3 ton/acre
 - o4 ton/acre

Results

- Wetland- Hand Filling: Mortality • Control- 51.06% • ¹/₂ Cup in bottom- 14.54% \circ ¹/₂ Cup in bottom & top- 6.90%

• Upland- Hand Filling: Mortality • Control- 15.26% • ¹/₂ Cup in bottom- 14.79% \circ ¹/₂ Cup in bottom & top- 8.21%

Next Steps in Research

 Monitor plots long term
 Based on results, modify and select applications for future projects

Other Biochar Applications

- Agriculture & Turf Grass
 - Reduce fertilizer and liming needs, Filter run-off
- Water Purification & Soil Remediation
- Urban (Street) Planting
 - Filter storm water run-off
- Carbon Credit Trading
- o Green Roof
 - Low Bulk Density
- Produce biofuel or heat as main product

Thank You!

Personal Contact Information:

Tyler Nicoll tnicoll@udel.edu (203)- 733-3541

References

- o http://biocharproject.org/biochar-technology/
- o http://dr.archives.pdx.edu/xmlui/handle/psu/4740
- o http://www.biochar-international.org/node/2304
- http://www.css.cornell.edu/faculty/lehmann/research/bioc har/biocharmain.html
- http://www.drillingcontractor.org/refining-the-grip-onnatures-fine-grains-15705